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DISTORTION OF THE WAVE PROFILES IN AN ELASTOPLASTIC

BODY UPON SPALLING

UDC 532.593G. I. Kanel’

The distortion of wave profiles in measuring the spall strength of elastoplastic materials is an-
alyzed. An expression for the velocity of an elastic compression wave that overtakes a plastic
rarefaction wave is obtained. It is shown that, depending on the ratio between the stress gradi-
ents in the plastic rarefaction wave and the overtaking compression wave, the front velocity of
the compressive wave varies in the limits between the velocities of the longitudinal perturbations
and the perturbations of volume expansion or compression.

The dynamic tensile strength of materials is studied by recording the spalling phenomena occurring
upon reflection of a pulse of one-dimensional shock-wave compression from the free surface of a body under
submicrosecond loading [1]. The interference of the incident and reflected waves causes rarefaction inside the
body which is responsible for high-rate failure. The magnitude of the spalling-rupture stress (spall strength of
the material) is determined by measuring the profile of the free-surface velocity as a function of time ufs(t).
As a result of relaxation of the tensile stress in the failure, a compression wave which reaches the surface of
the body to form a so-called spalling pulse on the profile ufs(t) is generated.

Analyzing the interaction between the incident and reflected waves by the method of characteristics, one
obtains a relation between the stress in the spalling plane σ∗ and the difference ∆ufs between the maximum
velocity of the surface in the compression pulse u0 and its velocity ahead of the spalling-pulse front um. In
the linear approximation, this relation has the form [2]

σ∗ = ρ0c0∆ufs/2, (1)

where ρ0 and c0 are the density of the material and the velocity of sound in it, respectively. Taking into
account the nonlinearity of compressibility introduces an insignificant correction into (1).

For an elastoplastic material, it is necessary to infer which velocity of sound should be used in (1):
the velocity of elastic longitudinal perturbations cl =

√
[K + (4/3)G]/ρ (K is the bulk modulus and G is the

shear modulus) or the velocity of volume expansion or compression cb =
√
K/ρ which corresponds to the

perturbation velocity in the plastic-deformation region.
Figure 1 shows the longitudinal stress σx versus the mass velocity up for wave interactions occurring

when the compression pulse reflects from the free surface of a body. The dashed curve shows the average
pressure p as a function of the mass velocity. The curve H shows the shock adiabat, the curves Si and
Sr show unloading trajectories in the incident and reflected rarefaction waves, respectively, and the curves Rpl

and Cel show the trajectories of state change along the C+ characteristics in the plastic-tension region before
spalling and in the elastic-compression region after spalling, respectively. The initial slope of the shock adiabat
is dσx/du = ρcl before reaching the elastic limit σg and dσx/du = ρcb in the plastic-deformation region beyond
the elastic limit. After shock compression, the rarefaction is elastoplastic as well. If the intensity of the shock
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Fig. 1

compression pulse exceeds the quantity 2σg, tension is generated in the plastic region owing to interaction
between the incident and reflected rarefaction waves.

Novikov, Divnov, and Ivanov [3] note that when the fracture begins, plastic tension in the spalling layer
becomes elastic compression. Because of this, the propagation velocity of the spalling-pulse front is equal to
the longitudinal velocity of sound cl, whereas the descending branch of the compression pulse propagates
with the volume velocity of sound cb < cl in front of it. As a result, the profile of the free-surface velocity
is distorted, and the surface-velocity decrement in (1) ∆ufs = u0 − um′ is smaller than that in the case
where the yield point is ignored (∆ufs = u0 − um). According to [3], the rupture stress is determined by the
point at which the Riemann trajectory O′K with the slope ρcb corresponding to the tail C− characteristics
of the reflected rarefaction wave intersects the trajectory m′K with the slope −ρcl corresponding to the
C+ characteristics of the spalling-pulse front (Fig. 1). The point m′ corresponds to the free-surface velocity
ahead of the spalling-pulse front. In this approximation, we obtain

σ∗c = ρ0cl∆ufs(1 + cl/cb)−1. (2)

In relation (2), the spalling thickness is ignored. At the same time, it is obvious that distortion
of the profiles of the free-surface velocity depends on the spalling thickness and the shape of the shock-
compression pulse (this is supported by experimental data). Consequently, when used to process experimental
data obtained under varied loading conditions, relation (2) can give different values of strength even though
its value is constant. To take this fact into account, Romanchenko and Stepanov [4] introduced the correction
∆σ into relation (2):

σ∗c = ρ0cl∆ufs
1

1 + cl/cb
+ ∆σ, ∆σ =

1
2
dσ

dt

∣∣∣
C−
h
( 1
cb
− 1
cl

)
. (3)

Here dσ/dt
∣∣∣
C−

is the stress gradient along the tail C− characteristic of the reflected rarefaction wave, which

is equal to twice the gradient of the descending branch of the compression pulse, and h is the thickness of the
spalling layer. Introduction of the correction ∆σ is substantiated in [4]. It is assumed that introduction of
∆σ allows one to determine the value of ufs that would occur ahead of the spalling-pulse front if the recorded
profile of ufs(t) was not distorted because of the difference in the wave velocities. However, in this case, one
should use the volume velocity of sound cb in (3) rather than its combination with cl. Gluzman and Kanel’
[5] proposed a corresponding relation

σ∗ = ρ0cb(∆ufs + δ)/2. (4)

According to [5], the correction δ is calculated under the assumption of superposition of the incident rarefaction
wave and the spalling pulse with allowance for the free-surface velocity gradients u̇1 and u̇2 measured in front
of the spalling-pulse front and in the spalling pulse itself, respectively:
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δ =
( h
cb
− h

cl

) |u̇1u̇2|
|u̇1|+ u̇2

. (5)

Here the dot denotes differentiation with respect to time.
The fact that, the spall strength can be determined by different methods with the use of same mea-

suring technique shows that the analysis is not sufficiently advanced and calls for more careful study of wave
interaction under spalling conditions in an elastoplastic body.

Figure 2 shows results of numerical modeling of the interaction between the overtaking compression
and rarefaction waves in an elastoplastic body. On the boundary of the plate, a triangular shock-compression
pulse was induced. Initially, the boundary velocity increased linearly and it then increased for 1 µsec, which
generated the second compression wave in the plate. In the calculations, the steepness of the second compres-
sion wave was varied. The profiles of the free-surface velocity shown in Fig. 2 illustrate the dependence of the
velocity of the second-wave front on its steepness. If the second wave is a shock wave, the velocity of its front
is equal to the longitudinal velocity of sound. As the steepness of the second wave decreases, the propagation
velocity of its front decreases and approaches the volume velocity of sound. Measurements performed under
similar conditions [6] show that the velocity of the second compression wave of low intensity lies in the range
between cl and cb.

To obtain an expression for the velocity of the second-wave front, we consider the x–t (distance–time)
diagram shown in Fig. 3. The diagram shows the C+ characteristics of the initial plastic rarefaction wave
followed by the compression wave. The curve F shows the trajectory of the front of the elastic compression
wave propagating at the velocity cF (cl > cF > cb). With allowance for the angular-momentum equation in
the Lagrange coordinates, for the flow on the right of the trajectory F , the rate of change in the stress along
the trajectory is given by

dσx
dt

∣∣∣
F

= σ̇+ − cF ρ0u̇
+.

Similarly, to the left of the trajectory F , we obtain
dσx
dt

∣∣∣
F

= σ̇− − cF ρ0u̇
−.

In these equations, the plus and minus superscripts denote the parameters on the right and on the left of the
trajectory F , respectively.

With allowance for the continuity equation, the mass-velocity gradient on the right of the trajectory
has the form

du

dt

∣∣∣
F

= u̇+ + cF ρ0V̇
+.

Since the deformation ahead of the second wave is assumed to be plastic, we have V̇ = −σ̇x/(ρ2
0c

2
b). Hence,
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du

dt

∣∣∣
F

= u̇+ − cF σ̇
+
x

ρ0c2b
.

On the left of the trajectory F , plastic expansion becomes elastic compression, and, hence, the mass-velocity
gradient in this region is given by

du

dt

∣∣∣
F

= u̇− − cF σ̇
−
x

ρ0c2l
.

If there are no discontinuities in the flow, the stress and mass-velocity gradients on either side of
the trajectory F must coincide. In this case, we obtain two equations for the velocity of the front of the
elastic-compression wave overtaking the plastic rarefaction wave:

cF =
σ̇+
x − σ̇−x

ρ0(u̇+ − u̇−)
, cF =

u̇+ − u̇−

σ̇+
x /(ρ0c2b)− σ̇

−
x /(ρ0c2l )

. (6)

Eliminating u̇+− u̇− from (6), we obtain the following relation between the velocity of the second elastic wave
and the stress gradients in the second wave and ahead of its front:

cF = cbcl

√
σ̇+
x − σ̇−x

σ̇+
x c2l − σ̇

−
x c2b

. (7)

Here σ̇+
x and σ̇−x are opposite in sign. In accordance with the solution obtained, the front of the overtaking

compression wave propagates with the longitudinal velocity of sound only in two limiting cases: 1) the stress
gradient vanishes in front of it; 2) the overtaking wave is a shock wave (σ̇−x →∞).

As the triangular compression pulse reflects from the free surface of the body, the interference of the
incident and reflected rarefaction waves develops in such a manner that in each section of the plate, a constant
tensile stress occurs up to the moment at which the spalling pulse arrives, i.e., σ̇+

x = 0. Consequently, according
to (7), the spalling-pulse front propagates with the longitudinal velocity of sound cF = cl independently of its
steepness. In this case, relations (2) and (4) give the same value of the rupture stress provided the correction
δ in (4) is calculated as follows:

δ = (h/cb − h/cF )|u̇1|. (8)

Here cF = cl. The spall strength is usually measured by loading plane specimens by impact of a plate, which
induces a shock-compression pulse having a plateau of finite duration. In this case, the stresses in the cross
sections of the specimen are not constant in front of the spalling-pulse front; therefore, some characteristics
of the elastic front of the spalling pulse vanish upon interaction with the plastic rarefaction wave in front of
it (Fig. 3). Consequently, relation (2) is not valid in this case, even though the spalling pulse has a shock
front. At the moment of spalling, the stress is calculated by relation (4) with allowance for correction (8),
where cF 6= cl is determined from (7). For an idealized trapezoidal pulse of shock loading, the quantity cF
can be obtained by averaging its values with allowance for the fact that σ̇+

x ≈ 0 near the free surface and
σ̇+
x ≈ ρcbu̇1/2 and σ̇−x = ρclu̇2/2 in the neighborhood of the spalling plane.

In all the above-mentioned approaches, the quantities σ∗ and δ are calculated under the assumption of
instantaneous failure concentrated in the spalling plane. In fact, the fracture velocity determined by a number
of activated fracture nuclei and their growth rate cannot be arbitrarily large. Since the fracture kinetics is
not known a priori, the extrapolation of the segments of the profile ufs(t), which is used to estimate the
quantity δ, is not substantiated. Therefore, the spall strength should be measured in such a manner that the
quantity δ decreases to the minimum value. The minimum distortions ufs(t) occur for a triangular pulse of
shock loading. In this case, relation between the measured velocity decrement ∆ufs and the correction δt in
(4) has the form

δt =
1
2

∆ufs
(√3(1− ν)

1 + ν
− 1
)
,

where ν is Poisson’s ratio. For ν = 0.30–0.35, the value of δt is 10–14% of the measured value of ∆ufs. Since
the steepness of the spalling pulse is not, as a rule, smaller than that of the rarefaction wave in front of it, the
correction calculated by (5) is (0.5–1)δt, i.e., the possible error in determining the spall strength by relations
(4) and (5) does not exceed 5–7%, which correlates with the error of experimental data.
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